INTRODUCTION TO APPROXIMATE GROUPS—EXAMPLES 2

Please email comments and corrections to mcht2@cam.ac.uk.

- 1. Show that a coset progression of rank r in an arbitrary abelian group is a Freiman-homomorphic image of a Bohr set of rank r in some finite abelian group.
- 2. Let Λ be a lattice in \mathbb{R}^d with basis x_1, \ldots, x_d , and Γ a sublattice with basis y_1, \ldots, y_d . Show that

$$\frac{|\det(y_1,\ldots,y_d)|}{|\det(x_1,\ldots,x_d)|} = [\Lambda:\Gamma].$$

- 3. Give an example, for some d, of a centrally symmetric convex body $B \subset \mathbb{R}^d$ and a lattice $\Lambda \subset \mathbb{R}^d$ such that whenever v_1, \ldots, v_d is a directional basis for Λ with respect to B we have $\langle v_1, \ldots, v_d \rangle \neq \Lambda$. What is the smallest d for which this is possible?
- 4. [May be submitted.] Set

$$x_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad x_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

let $L_1, L_2 \in \mathbb{N}$, and define $\overline{P}(x_1, x_2; L_1, L_2) = \{x_1^{\ell_1} x_2^{\ell_2} [x_2, x_1]^{\ell_3} : |\ell_1| \le L_1, |\ell_2| \le L_2, |\ell_3| \le L_1 L_2\}.$

- (a) Show that $P_{\text{nil}}(x_1, x_2; L_1, L_2) \subset \overline{P}(x_1, x_2; L_1, L_2) \subset P_{\text{nil}}(x_1, x_2; 5L_1, 5L_2).$
- (b) Show that the nilprogression $P = P_{nil}(x_1, x_2; L_1, L_2)$ satisfies $|P^3| \le K|P|$ for some constant K independent of L_1 and L_2 .
- 5. Give examples to show that a nilprogression $P_{nil}(x_1, \ldots, x_r; L_1, \ldots, L_r)$ of step s does not necessarily have small doubling if one of the L_i is bounded above in terms of r and s.
- 6. Let x_1, \ldots, x_r be elements of a group G, and let $L_1, \ldots, L_r \ge 0$. Suppose that there exists some C such that whenever $1 \le i < j \le r$ we have

$$[x_i^{\pm 1}, x_j^{\pm 1}] \in P_{\text{ord}}\left(x_{j+1}, \dots, x_r; \frac{CL_{j+1}}{L_i L_j}, \dots, \frac{CL_r}{L_i L_j}\right).$$

Show that $\langle x_1, \ldots, x_r \rangle$ is nilpotent of step at most r-1 and that $|P_{\text{ord}}(x;L)^3| \leq f(C,r,s)|P_{\text{ord}}(x;L)|$.

- 7. Let A be a subset of a group G, let H be another group, and suppose that $\varphi : A \to H$ is a Freiman 2-homomorphism. Show that if G is abelian then so is $\langle \varphi(A) \rangle$. What can you say about $\langle \varphi(A) \rangle$ if G is s-step nilpotent?
- 8. [May be submitted.] In this question the rank of a group is the minimum size of a generating set.
 - (a) Let G be a finite p-group (you may assume the well-known fact that such groups are nilpotent). Show that all minimal generating sets for G have the same size. Does the same statement hold if G is an arbitrary finite nilpotent group?
 - (b) Let G be a finitely generated abelian group, and let H be a subgroup of G. Show that the rank of H is at most the rank of G.
 - (c) Let G be a finitely generated nilpotent group of rank r and step s. Show that if H is a subgroup of G then the rank of H is at most f(r, s). Part (b) shows that we may take f(r, 1) = r; are there any other values of s for which we may take f(r, s) = r?
- 9. Let G be a group and suppose that $x, y \in G$ generate a non-abelian free subgroup. Write $X = \{x^{\pm 1}, y^{\pm 1}\}$. Show that for every finite set A we have $|AX| \ge 3|A|$.