INTRODUCTION TO APPROXIMATE GROUPS—EXAMPLES 3

Please email comments and corrections to mcht2@cam.ac.uk.

- 1. [May be submitted for marking.] A classical result of Mal'cev states that if G is a soluble subgroup of $GL_n(\mathbb{C})$ then G contains a subgroup of index $O_n(1)$ that is conjugate to a subgroup of $Upp_n(\mathbb{C})$.
 - (a) Let $A \subset GL_n(\mathbb{C})$ be a finite K-approximate group that generates a soluble subgroup of $GL_n(\mathbb{C})$. Using Mal'cev's result, show that there is some nilpotent subgroup N of step at most n in G such that A is contained in a union of at most $K^{O_n(1)}$ left-cosets of N.
 - (b) Deduce that there is a finite subgroup H and a nilprogression P_{nil} of rank at most $K^{O_n(1)}$ and step at most n such that A is contained in the union of at most $K^{O_n(1)}$ left-translates of HP_{nil} , and $|HP_{\text{nil}}| \leq \exp(K^{O_n(1)})|A|$.
- 2. [May be submitted for marking.] Show that for each $n \in \mathbb{N}$ there exists a constant $c = c_n > 0$ such that if G is a soluble subgroup of $GL_n(\mathbb{C})$, and if S is a finite symmetric generating set for G containing the identity and satisfying $|S^m| \leq m^{c \log m} |S|$ for some $m \geq 2$, then G is virtually n-step nilpotent.
- 3. Show that a finitely generated infinite group has at least linear growth and at most exponential growth.
- 4. Show that a finitely generated nilpotent group has polynomial growth.
- 5. Let F be the free group on generators x, y, and let $S = \{1, x, x^{-1}, y, y^{-1}\}$. Show that $|S^n| = 2 \cdot 3^n 1$ for every $n \in \mathbb{N}$.
- 6. Given a group G and $m \in \mathbb{N}$, define $G^m = \langle g^m : g \in G \rangle$ to be the subgroup of G generated by the mth powers of elements of G.
 - (a) If G is nilpotent of step s, show that $(G_s)^{m^s} \subset (G^m)_s \subset (G_s)^m$.
 - (b) If G is nilpotent of step s and has rank at most r, show that G^m has index at most $m^{O_{r,s}(1)}$ in G.
- 7. Suppose that G is a finitely generated group of rank at most r, and that $H \triangleleft G$ is a normal subgroup of size at most k such that G/H is s-step nilpotent. Show that G has an s-step nilpotent subgroup of index at most $O_{r,k,s}(1)$. This partially refines a lemma from the lectures showing that G has an (s+1)-step nilpotent subgroup of index at most k!.
- 8. If F is the free group on generators u_1, \ldots, u_r , we define the free s-step nilpotent group of rank r, denoted $N_{r,s}$, to be the quotient F/F_{s+1} . More precisely, writing $x_i = u_i F_{s+1} \in N_{r,s}$ for each i, we say that $N_{r,s}$ is the free s-step nilpotent group on generators x_1, \ldots, x_r . Show that an arbitrary s-step nilpotent group of rank at most r is isomorphic to a quotient of $N_{r,s}$ by some normal subgroup.
- 9. Let G be a group with an s-step nilpotent subgroup N of index at most k, and suppose that S is a finite symmetric generating set for G containing the identity with $|S| \leq r$. Show that $|S^n| \leq n^{O_{k,r,s}(1)}$ for every $n \geq 2$. Hint: Show this first when G is the free s-step nilpotent group on generators x_1, \ldots, x_r and $S = \{1, x_1^{\pm 1}, \ldots, x_r^{\pm 1}\}$. Then treat the case k = 1.
- 10. A subgroup H of a group G is said to be *characteristic* if $\varphi(H) \subset H$ for every automorphism φ of G. (a) Show that characteristic subgroups of a group G are normal in G.
 - (b) Show that characteristic subgroups of a group of are normal in O. (b) Show that if G is a group then all the terms of the upper and lower central series are characteristic.
 - (c) Let G be a group with subgroups $H < C \lhd G$. Show that if H is characteristic in C then H is normal in G.

- (d) Show that if G is a group of rank r and $k \in \mathbb{N}$ then there are at most $O_{r,k}(1)$ subgroups of G of index k. Hint: If H is a subgroup of index k then there is an action of G on the set of left-cosets of H, which has size k. How many different actions can G have on a set of size k?
- (e) Show that if G is a group of rank r and H is a subgroup of index k then there exists a subgroup N < H of index $O_{r,k}(1)$ that is characteristic in G.
- 11. Given d > 0, show that there exists $N = N_d$ such that if G is a group generated by a finite symmetric set S containing the identity, and if $|S^n| \leq n^d |S|$ for some $n \geq N$, then $|S^m| \leq m^{O_d(1)} |S|$ for every $m \geq n$. Hints: If C is a group and $H \triangleleft C$ is such that the quotient C/H is s-step nilpotent, find a subgroup H' < H that is characteristic in C and such that C/H' is s-step nilpotent. Then show that if C is in turn a finite-index normal subgroup of some group G then G/H' is well defined and virtually s-step nilpotent. It may then help to use question 9.