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1. Introduction

Theorem 1.1 (Freiman). Let G be a group and let A ⊂ G be a finite subset such that |A2| < 3
2 |A|. Then

there exists a subgroup H with |H| = |A2| such that for every a ∈ A we have A ⊂ aH = Ha.

Lemma 1.2. Let G be a group and let A ⊂ G be a finite subset such that |A2| < 3
2 |A|. Then H = A−1A

is a subgroup of G. Moreover, H = AA−1 and |H| < 2|A|.

Lemma 1.3. Let G be a group and let A ⊂ G be a finite subset such that |A2| < 3
2 |A|. Set H = A−1A

and let a ∈ A. Then A2 = aHa. In particular, |H| = |A2|.

2. Covering and higher sum and product sets

Theorem 2.1 (Ruzsa). Let A be a finite subset of the vector space Frp, and suppose that |A+A| ≤ K|A|.
Then there exists a subspace H of Frp of cardinality at most pK

4
K2|A| such that A ⊂ H.

Proposition 2.2. Let A be a finite subset of the vector space Frp, and suppose that |2A − 2A| ≤ K|A|.
Then there exists a subspace H of Frp of cardinality at most pK |A − A| such that A ⊂ H. In particular,

|H| ≤ pKK|A|.

Lemma 2.3 (Ruzsa’s covering lemma). Let A and B be finite subsets of some group and suppose that
|AB|/|B| ≤ K. Then there exists a subset X ⊂ A with |X| ≤ K such that A ⊂ XBB−1. Indeed, these
properties are satisfied by taking X to be a subset of A that is maximal with respect to the property that
the translates xB with x ∈ X are all disjoint.

Lemma 2.4. Let A be a finite subset of a group and suppose that |A−1A2A−1| ≤ K|A|. Then there exists
X ⊂ A−1A2 with |X| ≤ K such that A−1An ⊂ Xn−1A−1A for every n ∈ N.

Theorem 2.5 (Plünnecke–Ruzsa). Let G be an abelian group, and let A be a finite subset of G. Suppose
that |A+A| ≤ K|A|. Then |mA− nA| ≤ Km+n|A| for all non-negative integers m,n.

Example 2.6. Let H be a finite group, and let G = H ∗ 〈x〉, the free product of H and the infinite cyclic
group with generator x. Set A = H ∪ {x}. Then |A2| ≤ 3|A|, but A3 contains HxH, which has size |H|2.

Proposition 2.7. Let m ≥ 3 and let ε1, . . . , εm ∈ {±1}. Suppose that A is a subset of a group satisfying

|A3| ≤ K|A|. Then |Aε1 · · ·Aεm | ≤ K3(m−2)|A|.

Lemma 2.8 (Ruzsa triangle inequality). Let U, V,W be subsets of a group. Then there exists an injection
ϕ : U × V −1W → UV × UW . In particular, if U, V,W are finite then |U ||V −1W | ≤ |UV ||UW |.

3. Approximate groups

Lemma 3.1. Let A be a finite approximate group. Then |Am| ≤ Km−1|A| for every m ∈ N.

Proposition 3.2. Let A be a finite subset of a group G. If A is a K-approximate group then |A3| ≤ K2|A|.
Conversely, if |A3| ≤ K|A| then there exists an O(K12)-approximate group B such that A ⊂ B and
|B| ≤ 7K3|A|. Indeed, we may take B = (A ∪ {1} ∪A−1)2.

Theorem 3.3. Let A be a finite subset of a group G satisfying |A2| ≤ K|A|. Then there exists U ⊂ A
with |U | ≥ 1

K |A| satisfying |Um| ≤ Km−1|U | for every m ∈ N.
1



2 MATTHEW TOINTON LENT 2019

Lemma 3.4 (Petridis). Let A and B be finite subsets a group G, and let U ⊂ A be a non-empty subset
of A that minimises the ratio |UB|/|U |. Then, writing R = |UB|/|U |, for every finite subset C ⊂ G we
have |CUB| ≤ R|CU |.

*Theorem 3.5 (Tao; Petridis). Let A be a finite subset of a group and suppose that |A2| ≤ K|A| and

|AxA| ≤ K|A| for every x ∈ A. Then |Am| ≤ KO(m)|A| for every m ≥ 3.

4. Stability of approximate closure under basic operations

Proposition 4.1 (stability of small tripling under quotients). Let G,Γ be groups, let π : G → Γ be a
homomorphism, and let A ⊂ G be a finite symmetric set containing the identity. Then

|π(A)m|
|π(A)|

≤ |A
m+2|
|A|

.

In particular, if |A3| ≤ K|A| then |π(A)3| ≤ K9|π(A)| by Proposition 2.7.

Lemma 4.2. Let G be a group, let H < G, let A ⊂ G be a finite set, and let x ∈ G. Then |A−1A∩H| ≥
|A ∩ xH|.

Lemma 4.3. Let G be a group, let H < G, write π : G→ G/H for the quotient map, and let A ⊂ G be
a finite set. Then |A−1A ∩H| ≥ |A|/|π(A)|.

Lemma 4.4. Let G be a group, let H < G, write π : G→ G/H for the quotient map, and let A ⊂ G be
a finite set. Then |π(Am)||An ∩H| ≤ |Am+n| for every m,n ≥ 0.

Proposition 4.5 (stability of small tripling under intersections with subgroups). Let G be a group, let
H < G, and let A ⊂ G be a finite symmetric set containing the identity. Then

|Am ∩H|
|A2 ∩H|

≤ |A
m+1|
|A|

for every m ∈ N. In particular, if |A3| ≤ K|A| then |(Am ∩H)3| ≤ K9m|Am ∩H| for every m ≥ 2.

Proposition 4.6 (stability of approximate groups under intersections with subgroups). Let G be a group,
let H < G, and let A ⊂ G be a K-approximate group. Then for every m ∈ N the intersection Am ∩H is
covered by at most Km−1 left translates of A2 ∩H. In particular, Am ∩H is a K2m−1-approximate group
for every m ≥ 2.

Lemma 4.7 (stability of small tripling under Freiman homomorphisms). Let G,Γ be groups, let A ⊂ G be
finite, and suppose that ϕ : A→ Γ is a Freiman m-homomorphism. Then |ϕ(A)m| ≤ |Am|. In particular,
if ϕ is injective then

|ϕ(A)m|
|ϕ(A)|

≤ |A
m|
|A|

,

and if ϕ is a Freiman m-isomorphism then

|ϕ(A)m|
|ϕ(A)|

=
|Am|
|A|

.

Lemma 4.8 (stability of approximate groups under Freiman homomorphisms). Let G,Γ be groups, let
A ⊂ G be a K-approximate group, and suppose that ϕ : A3 → Γ is a centred Freiman 2-homomorphism.
Then ϕ(A) is also a K-approximate group.

5. Coset progressions, Bohr sets and the Freiman–Green–Ruzsa theorem

Theorem 5.1 (Freiman for G = Z; Green–Ruzsa for arbitrary G). Let G be an abelian group, and suppose
that A ⊂ G is a finite subset satisfying |A + A| ≤ K|A|. Then there exists a coset progression H + P of

rank at most O(KO(1)) such that A ⊂ H + P ⊂ O(KO(1))(A ∪ {0} ∪ −A).
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Proposition 5.2 (partially proved in ‘Introduction to Discrete Analysis’). Let G be an abelian group,
and suppose that A ⊂ G is a finite subset satisfying |A+A| ≤ K|A|. Then there is a subset B ⊂ 2A−2A,

a finite abelian group Z satisfying |Z| ≥ |A|, a set Γ ⊂ Ẑ of size at most O(KO(1)), some ρ ≥ 1/O(KO(1)),
and a centred Freiman 2-isomorphism ϕ : B(Γ, ρ)→ B.

Proposition 5.3. Let Z be a finite abelian group, let Γ ⊂ Ẑ with |Γ| = r, and let ρ < 1
2 . Then there

exists a coset progression H + P ⊂ B(Γ, ρ) of rank r with |H + P | ≥ (ρ/r)r|Z|.

Lemma 5.4. Let H + P be a coset progression of rank r, let G be an abelian group, and suppose that
ϕ : H + P → G is a centred Freiman 2-homomorphism. Then ϕ(H + P ) is also a coset progression of
rank r.

6. Geometry of numbers

Lemma 6.1. Let G be a finite abelian group and let Γ ⊂ Ĝ. Enumerate Γ = {γ1, . . . , γd}, and define
γ : G→ Rd/Zd via γ = (γ1, . . . , γd). Then γ(G) + Zd is a lattice in Rd with determinant | ker γ|/|G|.

Theorem 6.2 (Minkowski’s second theorem). Let B ⊂ Rd be a symmetric convex polytope and let Λ be
a lattice. Write λ1 ≤ . . . ≤ λd for the successive minima of B with respect to Λ. Then λ1 . . . λd vol(B) ≤
2d det(Λ).

Lemma 6.3 (Blichfeldt). Let Λ be a lattice in Rd, and let A ⊂ Rd be a measurable set. Suppose that A
contains no pair of distinct points a, b with a− b ∈ Λ. Then vol(A) ≤ det(Λ).

7. Progressions in the Heisenberg group

No theorems, only examples and definitions.

8. Nilpotent groups

Lemma 8.1. Let G be a group, let N,H1, . . . ,Hk CG be normal subgroups of G, and for each i let Si be
a generating set for Hi. Suppose that [s1, . . . , sk] ∈ N whenever si ∈ Si. Then [H1, . . . ,Hk] ⊂ N .

Proposition 8.2. If G = G1 > G2 > · · · is the lower central series of a group G then Gk+1 = [Gk, G]
for every k. In particular, [G, . . . , G]k = Gk for every k.

Proposition 8.3. Let G be a group with generating set S. Then Gk = 〈[s1, . . . , sk]Gk+1 : si ∈ S〉.

Proposition 8.4. Let G be a group, and let G = G1 > G2 > · · · be the lower central series of G. Then
[Gi, Gj ] ⊂ Gi+j for every i, j ∈ N.

Proposition 8.5. Let G be a nilpotent group, and suppose that G = H1 > · · · > Hr+1 = {1} is a central
series for G. Then Hi ⊃ Gi for every i = 1, . . . , r + 1 and Hr+1−j ⊂ Zj(G) for every j = 0, . . . , r.

Corollary 8.6. If a group G is nilpotent then both its upper and lower central series have length exactly
s+ 1, in the sense that Gs 6= Gs+1 = {1} and Zs−1(G) 6= Zs(G) = G.

9. Torsion-free nilpotent approximate groups: an overview

*Proposition 9.1. Given r, s ∈ N there exists λr,s > 0 such that if x1, . . . , xr are elements in an s-step
nilpotent group and L1, . . . , Lr ≥ λr,s then Pnil(x;L) is an Or,s(1)-approximate group.

Theorem 9.2. Let G be an s-step nilpotent group, and suppose that A ⊂ G is a finite K-approximate
group. Then there exist a subgroup H C 〈A〉 and a nilprogression Pnil of rank at most KOs(1) such that

A ⊂ HPnil ⊂ AK
Os(1)

. In particular, |HPnil| ≤ exp(KOs(1))|A|.

Theorem 9.3. Let G be a torsion-free s-step nilpotent group, and suppose that A ⊂ G is a finite K-
approximate group. Then there exists an ordered progression Pord of rank at most KOs(1) such that

A ⊂ Pord ⊂ AK
Os(1)

.
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Proposition 9.4. Let G be a torsion-free s-step nilpotent group, and suppose that A ⊂ G is a finite
K-approximate group. Then there exist k ≤ KO(1) and KO(1)-approximate groups A1, . . . , Ak ⊂ AO(1)

such that A ⊂ A1 · · ·Ak.

Proposition 9.5. Let G be a torsion-free s-step nilpotent group, and suppose that A ⊂ G is a finite
K-approximate group. Then there exist r ≤ KO(1) and KO(1)-approximate groups A0, A1 . . . , Ar ⊂ AO(1)

such that |A0 · · ·Ar| ≥ exp(−KOs(1))|A|.

Theorem 9.6 (Green–Ruzsa). Let G be an abelian group (written multiplicatively), and suppose that

A ⊂ G is a finite K-approximate group. Then there exist r ≤ KO(1), a finite subgroup H < G, elements
x1, . . . , xr ∈ G, and L1, . . . , Lr ∈ N such that HP (x;L) ⊂ A4 and |HP (x;L)| ≥ exp(−KO(1))|A|.

Proposition 9.7. Let G be a torsion-free s-step nilpotent group, and suppose that A ⊂ G is a finite K-
approximate group. Write π : G→ G/[G,G] for the quotient homomorphism, and noting that G/[G,G] is
abelian and π(A) is a K-approximate group, let H < G/[G,G] and x1, . . . , xr ∈ G/[G,G] be the subgroup
and elements given by applying Theorem 9.6 to π(A). Then∣∣∣∣∣(A24 ∩ π−1(H)

) r∏
i=1

(
A24 ∩ π−1(〈xi〉)

)∣∣∣∣∣ ≥ |A|
expKO(1)

.

Lemma 9.8. Let G be an s-step nilpotent group, and write π : G→ G/[G,G] for the quotient homomor-
phism. Then

(i) for every x ∈ G/[G,G] the group π−1(〈x〉) has step at most s− 1; and
(ii) if H < G/[G,G] is a finite subgroup and G is torsion-free then π−1(H) has step at most s− 1.

Lemma 9.9. Let G be a group. Then for each k ∈ N the simple commutator map

[ , . . . , ]k : Gk → Gk
(x1, . . . , xk) 7→ [x1, . . . , xk]

is a homomorphism modulo Gk+1 in each variable. Moreover, the commutator subgroup [G,G] is contained
in the kernel of each of these homomorphisms in each variable.

10. Torsion-free nilpotent approximate groups: the details

Lemma 10.1. Let G be a group and N CG a normal subgroup, and write π : G→ G/N for the quotient
homomorphism. Let A ⊂ G be symmetric, and define ϕ : π(A)→ A by choosing each ϕ(x) arbitrarily so
that π(ϕ(x)) = x. Then for every a ∈ A we have

a ∈
(
A2 ∩N

)
ϕ(π(a)),

and for every x, y ∈ G/N with x, y, xy ∈ π(A) we have

ϕ(xy) ∈ ϕ(x)ϕ(y)
(
A3 ∩N

)
.

Lemma 10.2. Let G be a group, let U, V < G, and suppose that [U, V ] is central in G. Then the
commutator map [ , ] : U × V → [U, V ] is a homomorphism in each variable.

11. p-groups

*Proposition 11.1. A finite group is nilpotent if and only if it is a direct product of p-groups.

Proposition 11.2. Let Γ be an abelian p-group of rank r and suppose that X ⊂ Γ is a union of subgroups
of Γ. Then 〈X〉 ⊂ rX.

Lemma 11.3. Let Γ be a finite abelian p-group. Then a subgroup H ( Γ is maximal if and only if
Γ/H ∼= Z/pZ.

Lemma 11.4. Let Γ be a finite abelian p-group. Then a subset S ⊂ Γ generates Γ if and only if S+(p ·Γ)
generates Γ.
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Corollary 11.5. Let Γ be a finite abelian p-group. Then all minimal generating sets for Γ have the same
size.

Lemma 11.6. If Γ is an abelian p-group and Γ′ is a subgroup of Γ then the rank of Γ′ is at most the rank
of Γ.

*Proposition 11.7. Let G be an s-step nilpotent group, let x1, . . . , xr ∈ G, and let L1, . . . , Lr ∈ N. Then

Pord(x;L) ⊂ Pnil(x;L) ⊂ Pord(x;L)O(s)s
2
rs .

Proposition 11.8. Let G be a finite p-group of step s, and suppose that A ⊂ G is a finite K-approximate
group. Then there exist r ≤ KO(1) and KO(1)-approximate groups A0, A1 . . . , Ar ⊂ AO(1) such that

|A0 · · ·Ar| ≥ exp(−KOs(1))|A|, and a normal subgroup NCG with N ⊂ AKOs(1)
such that [Ai, . . . , Ai ]s ⊂

N for each i.

12. Arbitrary approximate groups

Theorem 12.1 (Breuillard–Green–Tao). Let G be an arbitrary group and suppose that A ⊂ G is a finite
K-approximate group. Then there exist subgroups H C Γ < G with H ⊂ A4 such that Γ/H is nilpotent of
step OK(1) and A is contained in a union of OK(1) left-cosets of Γ.

Corollary 12.2. Let G be an arbitrary group and suppose that A ⊂ G is a finite K-approximate group.
Then there exist subgroups H C Γ < G with H ⊂ A4 such that Γ/H is nilpotent of step OK(1) and A is
contained in a union of OK(1) left-translates of A2 ∩ Γ, which is a K3-approximate group by Proposition
4.6.

Lemma 12.3. Let G be a group with a subgroup Γ, and suppose that A ⊂ G is a finite K-approximate
group such that |Am ∩ Γ| ≥ c|A|. Then A is contained in a union of at most Km/c left-cosets of Γ.

13. The sum-product phenomenon over C

Theorem 13.1 (Solymosi’s sum-product theorem in C). Let U, V,W ⊂ C be finite sets such that U,W 6=
{0}. Then

|U + V ||UW | ≥ |U |
3/2|V |1/2|W |1/2

56
.

In particular, an arbitrary finite set A ⊂ C satisfies

max{|A+A|, |AA|} ≥ |A|
5/4

2
√

14
.

Lemma 13.2. Suppose that z1, . . . , zk ∈ C and r1, . . . , rk > 0 are such that
⋂k
i=1D(zi, ri) 6= ∅ and

zi /∈ D(zj , rj) whenever i 6= j. Then k ≤ 7.

Lemma 13.3. Let U, V,W ⊂ C be finite sets and suppose that 0 6= W and |U | ≥ 2. Fix v ∈ V and
w ∈ W , and for each u ∈ U fix an element n(u) ∈ U \ {u} that minimises |u − n(u)| (thus n(u) is the
‘nearest neighbour’ to u in U). Then

(13.1)
∑
u∈U

∣∣{x ∈ U + V : |(u+ v)− x| ≤ |u− n(u)|
}∣∣ ≤ 7|U + V |

and

(13.2)
∑
u∈U

∣∣{x ∈ UW : |uw − x| ≤ |uw − n(u)w|
}∣∣ ≤ 7|UW |.

14. Complex upper-triangular groups

Theorem 14.1 (Breuillard–Green). Suppose that A ⊂ Uppn(C) is a finite K-approximate group. Then

there is a nilpotent subgroup N < Uppn(C) of step at most n such that |AOn(1) ∩N | ≥ K−On(1)|A|.

Lemma 14.2. Let π : G→ H be a homomorphism, let N < H, and let A ⊂ G be a finite symmetric set.
Suppose that |π(Ak) ∩N | ≥ α|π(A)|. Then |Ak+2 ∩ π−1(N)| ≥ α|A|.
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15. Growth of groups

Lemma 15.1. The notions of ‘polynomial growth of degree d’ and ‘exponential growth’ of a finitely
generated group do not depend on the choice of generating set.

Proposition 15.2. Let G be a group and H < G a finite-index subgroup. Then H is finitely generated if
and only if G is. If they are finitely generated then H has polynomial growth of degree d if and only if G
does.

Lemma 15.3. Let G be a group with a finite symmetric generating set S containing the identity. Suppose
H < G has index at least m. Then Sm−1 contains representatives of at least m left-cosets of H in G.

Proposition 15.4. Let G be a group with a finite symmetric generating set S containing the identity.
Suppose that H < G has index k ∈ N in G. Let X ⊂ Sk be a complete set of left-coset representatives for
H in G (such a set exists by Lemma 15.3. Then Snk ⊂ X(H ∩ S3k)n−1 for every n ≥ 2. In particular,
(H ∩ S3k) generates H.

Theorem 15.5 (Gromov). If a finitely generated group G has polynomial growth then G is virtually
nilpotent.

Lemma 15.6. Let G be a group and let H < G have index k ∈ N in G. Then there exists a subgroup
N < H with N CG such that [G : N ] ≤ kk.

16. A refinement of Gromov’s theorem

Theorem 16.1 (Breuillard–Green–Tao). For every d > 0 there exists N = Nd such that if S is a finite
symmetric generating set containing the identity for a group G, and |Sn| ≤ nd|S| for some n ≥ N , then
G is virtually nilpotent of step at most Od(1).

Proposition 16.2. Let S be a finite symmetric generating set containing the identity for some group G,
and suppose that |Sn| ≤ nd|S| for some n ≥ 312. Then there exists m ∈ N with n1/2 ≤ m ≤ n such that

Sm is a 3O(d)-approximate group.

Lemma 16.3. Let S be a finite symmetric generating set containing the identity for some group G, and
suppose that |Sn| ≤ nd|S| for some n ≥ 312. Then there exists m ∈ N with bn1/2c ≤ m ≤ n5/6 and some
K depending only on d such that |S3m| ≤ K|Sm|.

Proposition 16.4. For every d > 0 there exists N = Nd such that if S is a finite symmetric generating
set containing the identity for a group G, and |Sn| ≤ nd|S| for some n ≥ N , then there exist subgroups
H C C < G such that H ⊂ S4n, such that C/H is nilpotent of step at most Od(1), and such that
[G : C] ≤ Od(1).

Lemma 16.5. Let G be a group and suppose that H C G is a finite normal subgroup such that G/H is
s-step nilpotent. Then there exists a subgroup N < G of index at most |H|! that is nilpotent of step at
most s+ 1.
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