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Abstract

We prove a Freiman–Ruzsa-type theorem valid in a p-group of nilpotency class 2 when
p is at least 3. The method is similar to that used by E. Breuillard and B. Green to prove
their analogous result in the case of a torsion-free nilpotent group, with Mal’cev’s embedding
theorem replaced by the Lazard correspondence.

Disclaimer

This note is intended as an addendum to [6]. We therefore assume familiarity with all definitions,
notation and motivation from that paper, and reference results from it directly, without restating
them here.

This note is for interest only and is not intended for peer review or publication. As such, it is
not as polished or carefully proof read as a published paper would be.

1 Introduction

The author has proved a structure theorem for approximate subgroups of an arbitrary nilpotent
group [6]. This generalised earlier work of a number of authors, most recently E. Breuillard and
B. Green [1], who had previously established the corresponding result in the special case of a
torsion-free nilpotent group.

The approach taken in [6] is somewhat different to that used by Breuillard and Green. Their
argument relies on an embedding theorem of Mal’cev, which essentially allows them to reduce
the study of approximate subgroups of an arbitrary torsion-free nilpotent group to the study of
approximate subgroups of a simply connected nilpotent Lie group. This in turn allows them to
study the image of an approximate group in the Lie algebra associated to the Lie group, in which
setting they are able appeal to abelian approximate group theory.

It is likely that one could prove a structure theorem for approximate subgroups of certain
p-groups using a fairly direct adaptation of this argument. Specifically, it appears that such an
approach should work if G is a p-group of nilpotency class less than p. Indeed, in that case a
correspondence theorem of Lazard allows one to associate to G an additive abelian p-group g,
called a Lie ring, that plays a role analogous to that of the Lie algebra of a Lie group; this should
then allow one to apply arguments similar to those used by Breuillard and Green.

The purpose of this note is to illustrate this principle. We do so by proving the following version
of [6, Theorem 1.5], valid in the simple case in which G is a 2-step p-group with p > 2. We do
not consider the higher-step case, as even the most general result obtainable by this method would
already be superseded by the results of [6].

∗The author is a Junior Research Fellow of Homerton College, Cambridge. When this research was carried out
he was supported by an EPSRC doctoral training grant, awarded by the Department of Pure Mathematics and
Mathematical Statistics in Cambridge, and a Bye-Fellowship from Magdalene College, Cambridge.
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Theorem 1.1. Let p be an odd prime and let G be a p-group of nilpotency class 2. Suppose that
A ⊂ G is a K-approximate group. Then there exists a nilpotent progression P = P (x1, . . . , xk;L)
of rank k �K 1 and a subgroup H of G, normalised by A, such that |HP | �K |A| and A ⊂ HP .

In Section 2 we describe the Lazard correspondence and record its relevant properties, and then
we briefly summarise the resultant notation in Section 3. We prove Theorem 1.1 in Sections 4 and
5.

Remark 1.2. The bounds in Theorem 1.1 are all effective and reasonable, but since [6, Theorem
1.5] is both stronger and more general than Theorem 1.1 we suppress the details.

Remark 1.3. In the 2-step setting a nilpotent progression has a fairly explicit form, as follows.

P (x1, . . . , xk;L) :=
{
xl11 . . . x

lk
k

∏
i<j [xi, xj ]

lij : |li| ≤ Li, |lij | ≤ LiLj

}
.
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2 The Lazard correspondence

Let G be a finite p-group of nilpotency class at most p − 1. Then [3, Example 10.24] and the
preceding discussion indicate that it is possible to define operations + and [ , ] on G that make
it into a so-called Lie ring that plays a role similar to that of the Lie algebra of a Lie group. See
also [4, §3]. This Lie ring is an additive abelian group under + and the bracket is bilinear and
anticommutative (meaning that [x, x] is always trivial) and satisfies the Jacobi identity. We shall
review briefly in this section the relevant properties of this construction.

The descriptions in [3, 4] define the operations + and [ , ] on the underlying set G itself.
However, in order to emphasise the analogy with Lie groups and Lie algebras we shall view the
Lie ring as a different set g and define a map log : G → g that takes an element x of G to its
corresponding element in g, writing exp : g→ G for its inverse.

The first property that we highlight is that if x ∈ G and X := log x ∈ g then the order of X in
the additive group g is equal to the order of x in the multiplicative group G [3].

The second property we describe relates to a well known feature of the exponential map to a
Lie group from its Lie algebra, which is that it satisfies the Baker–Campbell–Hausdorff formula.
In its 2-step incarnation this states that for X,Y belonging to the Lie algebra we have

expX expY = exp(X + Y + 1
2 [X,Y ]). (2.1)

In order for this formula and its consequences to make sense in the context of p-groups and their
associated Lie rings it would be necessary at the very least to be able to define what 1

2 [X,Y ] should
mean.

Definition 2.1. Let S be a set of primes. Then we shall say that a group Γ is uniquely S-divisible
if for every x ∈ Γ and every n ∈ N whose prime factors all lie in S there exists a unique y ∈ Γ such
that yn = x. By uniqueness we may, in this situation, denote x1/n := y.

Lemma 2.2. Let p be a prime, let G be a p-group and write Sp for the set of primes distinct from
p. Then G is uniquely Sp-divisible. Furthermore, if x ∈ G and n is coprime to p then the element
x1/n lies in the cyclic group generated by x.

Proof. [3] Let n be a product of primes from Sp and let x ∈ G. The cyclic group generated by x
has order pm for some m. Clearly we may take y to be xn

∗
, where n∗ is the multiplicative inverse

of n modulo pm. Now suppose that z also satisfies zn = x. Then znn
∗

= y, and so x, y and z lie
in a common cyclic group. Hence y = z by the uniqueness of multiplicative inverses of numbers
coprime to p in Z/prZ.
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In particular, if p is odd then in any p-group we may take square roots or, if the group is
abelian, halves, and so (2.1) is well defined. It turns out that if p is odd and G is a p-group of
nilpotency class 2 with associated Lie ring g then the exponential map does indeed satisfy the
Baker–Campbell–Hausdorff formula1 [3], and it is from this that a large part of our argument will
follow.

Finally, we note some specialisations of the results in [1, Section 5] to 2-step p-groups.

Lemma 2.3. Let p be an odd prime and let G be a 2-step p-group with associated Lie ring g.
Suppose x1, x2, . . . ∈ G and write Xi := log xi. Then the following identities hold.

(i) exp(X1 + . . .+Xn) = x
1/2
n x

1/2
n−1 . . . x

1/2
2 x1x

1/2
2 . . . x

1/2
n−1x

1/2
n .

(ii) exp([X1, X2]) = x1x2x
−1
1 x−12 .

(iii) exp(X1 +X2 + [X3, X4]) = x
1/2
2 x1x

1/2
2 x3x4x

−1
3 x−14 .

Proof. Statement (i) is true for n = 1 by definition and more or less immediate from the Baker–
Campbell–Hausdorff formula when n = 2. For larger n it may be verified by iterating the n = 2
statement.

Statement (ii) is immediate from the Baker–Campbell–Hausdorff formula and statement (iii)
follows from (i) and (ii) and the Baker–Campbell–Hausdorff formula.

3 Notation

For the remainder of this note p will be an odd prime and G will be a 2-step nilpotent p-group with
associated Lie ring g. We shall in general denote subsets of G by capital Roman letters A,B . . .
and subsets of g by lower-case Fraktur letters a, b, . . .. We shall denote elements in G by lower-
case Roman letters x, y, . . . and their corresponding elements in g by the corresponding upper-case
Roman letters X,Y, . . ..

If B ⊂ G is a set then we shall write logB := {log x : x ∈ B}. If b ⊂ g is a set then we shall
write [b, b] := {[X,Y ] : X,Y ∈ b}. If X1, . . . , Xk ∈ g then we shall denote by p(X1, . . . , Xk;L) the
abelian progression P (X1, . . . , Xk;L) so as to emphasise its containment in g.

4 Nilcompletions and abelian coset progressions

In this section we recall some definitions from [1] and recast some of the arguments from that work
in the setting of finite p-groups. Some of the arguments can be simplified in this setting, and we
shall include remarks noting where simplification has been possible. On the other hand, there is
a need for some additional work in order to cope with the possible appearance of the subgroup H
in the conclusion of Theorem 1.1. Again, we shall include remarks to indicate exactly where these
additional arguments are required.

We begin with a definition from [1].

Definition 4.1 (2-step nilcompletion [1, Definition 4.1]). Let b ⊂ g be a set. We define the
nilcompletion b of b to be the set b + [b, b].

The fact that the bracket operation is bilinear implies that, for elements bi, b
′
j ∈ b, we have

[b1 + . . .+ bm, b
′
1 + . . .+ b′m] =

∑
i,j≤m

[bi, b
′
j ],

and so we have the inclusion
mb ⊂ m2b (4.1)

1In fact, the general Baker–Campbell–Hausdorff formula holds whenever the step of the group is less than p.
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from [1, Lemma 4.2]. The second inclusion from that lemma, namely

[b, b] ⊂ b, (4.2)

is immediate from the definition of nilcompletion.
We now come onto one of the key observations of [1], which implies that if A is an approximate

subgroup of G then both logA and its nilcompletion are approximate additive subgroups of g.

Proposition 4.2 ([1, Lemma 6.1]). Let A ⊂ G be a K-approximate subgroup and write a := logA.
Then we have |a + a| ≤ K23|a| and |ma| ≤ KO(m)|a| for all m ∈ N.

Proof. The argument is essentially identical to that used in [1]. Set

B := {x2, x4 : x ∈ A} and b := logB = {2X, 4X : X ∈ a},

and note that
b + b = {r1X1 + r2X2 + [r3X3, r4X4] : Xi ∈ A, ri ∈ {2, 4}}.

By Lemma 2.3, for any ri ∈ {2, 4} we have

exp(r1X1 + r2X2 + [r3X3, r4X4]) = x
r2/2
2 xr11 x

r2/2
2 xr33 x

r4
4 x
−r3
3 x−r44 ∈ A24,

and so by [6, Lemma 2.1] we have

|b + b| ≤ K23|A| = K23|a|. (4.3)

Now a + a = {X1 +X2 + [X3, X4] : Xi ∈ a}, and for X1, X2, X3, X4 ∈ a we have

4(X1 +X2 + [X3, X4]) = 4X1 + 4X2 + [2X3, 2X4] ⊂ b + b,

and so
4 · (a + a) ⊂ b + b. (4.4)

However, since g is an additive p-group, Lemma 2.2 implies that the map X 7→ 4X is a bijection
g→ g, and so combining (4.3) and (4.4) we obtain

|a + a| = |4 · (a + a)| ≤ |b + b| ≤ K23|a|,

which was the first desired conclusion of the proposition. The second desired conclusion then follows
from the Ruzsa triangle inequality [5, (2.6)] and its associated sum-set estimates [5, Corollary
2.23].

Now, in a spirit similar to that of [1, Corollary 6.2], we use the fact that a is an approximate
additive subgroup of g to place a efficiently inside a coset progression h + p. The key difficulties
arise because we will also need to ensure that exp h is a genuine subgroup of G and that it is
normalised by exp p.

Proposition 4.3. Let A ⊂ G be a K-approximate subgroup and write a := logA. Then there exist
an additive subgroup h of g and a progression p = p(X1, . . . , Xk;L) in g of dimension k �K 1
satisfying the following conditions.

(i) The set exp h is a subgroup of G.

(ii) For every Y ∈ h and every Xi we have [Y,Xi] ∈ h.

(iii) a ⊂ h + p.

(iv) h + p ⊂ OK(1)a.
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It will be helpful to be able to apply Chang’s covering argument in a slightly different form to
that stated in [6].

Proposition 4.4 (Chang [2, Proposition 5.1]). Suppose that X is a subset of an abelian group
with doubling constant K and that 2X−2X contains a proper coset progression H+Q of size η|X|
and dimension d. Then there exists a progression P of dimension at most d + KO(1)/η such that
X ⊂ H + P ⊂ KO(1)X.

Proof of Proposition 4.3. It follows from Proposition 4.2 that a has doubling constant at most
KO(1), and so we can conclude from [6, Theorem 2.2] that there exists a proper coset progression
h0 + q with dimension at most O(KO(1)) satisfying

|h0 + q| ≥ exp(−O(KO(1)))|a| (4.5)

and
h0 + q ⊂ 4a. (4.6)

We can then apply Chang’s covering argument in the form of Proposition 4.4 to conclude that
there is a progression p = p(X1, . . . , Xk;L) of dimension

k �K 1 (4.7)

such that a ⊂ h0 + p ⊂ OK(1)a, and hence by (4.1) that

a ⊂ h0 + p ⊂ h0 + p ⊂ OK(1)a. (4.8)

Set h := h0 + 〈[h0, h0]〉+ 〈[h0, p]〉. Condition (ii) required by the lemma follows immediately from
the linearity of the bracket in the first co-ordinate (and the fact that the nilpotency class of G is
2), whilst condition (iii) is a weaker statement than the first inclusion of (4.8).

Conditions (i) and (iv) require a bit more work. Let us verify condition (i), which is that exp h
is a (genuine) subgroup of G. We start by noting that if Zj are elements of h0 and lj are integers
then ∑

j

[Zj , ljXi] =

∑
j

ljZj , Xi


by the bilinearity of the bracket operator, and so

〈[h0, p]〉 =

{
k∑

i=1

[Zi, Xi] : Zi ∈ h0

}
=

k∑
i=1

[h0, Xi]. (4.9)

The set h therefore consists of all elements of the form

Y +

m∑
j=1

[Vj ,Wj ] +

k∑
i=1

[Zi, Xi], (4.10)

with m ∈ N and Y, Vj ,Wj , Zi ∈ h0. The Baker–Campbell–Hausdorff formula (2.1) then gives

log
(

exp
(
Y +

∑m
j=1[Vj ,Wj ] +

∑k
i=1[Zi, Xi]

)
exp

(
Y ′ +

∑m
j=1[V ′j ,W

′
j ] +

∑k
i=1[Z ′i, Xi]

))
= Y + Y ′ + [ 12Y, Y

′] +
∑m

j=1[Vj ,Wj ] +
∑m

j=1[V ′j ,W
′
j ] +

∑k
i=1[Zi + Z ′i, Xi],

which is also of the form (4.10) by Lemma 2.2, and so exp h is a closed subset in a torsion group
and hence a subgroup, as claimed.

We now turn to condition (iv). The final inclusion of (4.8) implies that 2(h0 + p) ⊂ OK(1)a,
and so Proposition 4.2 and the first inclusion of (4.8) combine to imply that |2(h0 + p)| �K h0 + p.
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Furthermore, it follows from (4.6) and (4.8) that 2(h0 + p) − 2(h0 + p) contains the proper coset
progression h0 + q, and from (4.5), (4.8) and Proposition 4.2 that |h0 + q| �K |h0 + p|, and so
applying Proposition 4.4 again there is a progression p′ such that

h0 + p ⊂ h0 + p′ (4.11)

and
dim p′ �K 1. (4.12)

It is clear that h is contained in the group generated by h0 + p, and so (4.11) and (4.12) imply
that h/h0, and in particular the further quotient h/(h0 + 〈[h0, p]〉), have rank at most OK(1). Now
h/(h0 + 〈[h0, p]〉) is generated by elements of the form h0 + 〈[h0, p]〉+[Y, Y ′], with Y, Y ′ ∈ h0, and so
the rank bound and [6, Lemmas D.1 & D.2] show that there must be some set S = {[Yi, Y ′i ] : i ∈ [n]}
with Yi, Y

′
i ∈ h0 and

n�K 1 (4.13)

such that (h0 + 〈[h0, p]〉+ S) generates h/(h0 + 〈[h0, p]〉).
This implies in particular that

h = h0 + 〈[h0, p]〉+ 〈S〉 (4.14)

However, l[Yi, Y
′
i ] = [lYi, Y

′
i ] ∈ [h0, Y

′
i ], and so, by a similar argument to that leading to (4.9), we

have

〈S〉 =

n∑
i=1

[h0, Y
′
i ]. (4.15)

Thus (4.9), (4.14) and (4.15) combine to show that h ⊂ (k + n)(h0 + p), which then gives h + p ⊂
(1 + k + n)(h0 + p). The bounds (4.7) and (4.13) and the last inclusion of (4.8) therefore imply
that h + p ⊂ OK(1)a, which is condition (iv) of the proposition.

5 Nilboxes and nilpotent coset progressions

The purpose of this section is to complete the proof of Theorem 1.1. We begin by recalling from
[1] the definition of a nilbox.

Definition 5.1 (Nilbox). Suppose that X1, . . . , Xk ∈ g and that L = (L1, . . . , Lk) ∈ Nk. Then we
define the nilbox B(X1, . . . , Xk;L) by

B(X1, . . . , Xk;L) :=
{∑k

i=1 liXi +
∑

i<j lij [Xi, Xj ] : |li| ≤ Li, |lij | ≤ LiLj

}
.

It is immediate from the definitions that for any X1, . . . , Xk ∈ g and any L ∈ Nk we have

p(X1, . . . , Xk;L) ⊂ B(X1, . . . , Xk;L). (5.1)

The following lemma shows that the reverse containment is also approximately true.

Lemma 5.2. Let X1, . . . , Xk ∈ g and let L ∈ Nk. Then

B(X1, . . . , Xk;L) ⊂ k(k − 1)p(X1, . . . , Xk;L).

Proof. Abbreviate p := p(X1, . . . , Xk;L). By [1, Lemma 4.3] any integer lij satisfying |lij | ≤ LiLj

can be written in the form lij = lilj + l′il
′
j with |li|, |l′i| ≤ Li and |lj |, |l′j | ≤ Li. This implies in

particular that lij [Xi, Xj ] = [liXi, ljXj ] + [l′iXi, l
′
jXj ] lies in 2p, and so every element of the form

l1X1 + . . .+ lkXk +
∑
i<j

lij [Xi, Xj ]

with |li| ≤ Li and |lij | ≤ LiLj lies in k(k − 1)p, as required.
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It was established in [1] that nilboxes are also closely related to nilpotent progressions. In the
present setting we have the following straightforward relationship.

Lemma 5.3. Let X1, . . . , Xk ∈ g and write xi := expXi. Let L ∈ Nk. Then

exp(B(X1, . . . , Xk;L)) ⊂ P (x
1/2
1 , . . . , x

1/2
k ;
√

6L)

and
P (x1, . . . , xk;L) ⊂ exp(B( 1

2X1, . . . ,
1
2Xk;

√
6L)).

Proof. For l1X1+ . . .+lkXk+
∑

i<j lij [Xi, Xj ] ∈ B(X1, . . . , Xk;L) the Baker–Campbell–Hausdorff
formula gives

exp
(
l1X1 + . . .+ lkXk +

∑
i<j lij [Xi, Xj ]

)
= xl11 . . . x

lk
k

∏
i<j [xi, xj ]

lij− 1
2 lilj .

To see that this lies in P (x
1/2
1 , . . . , x

1/2
k ;
√

6L) note simply that

[xi, xj ]
lij− 1

2 lilj = [x
1/2
i , x

1/2
j ]4lij−2lilj .

On the other hand, we have

log
(
xl11 . . . x

lk
k

∏
i<j [xi, xj ]

lij
)

= l1X1 + . . .+ lkXk +
∑

i<j(lij + 1
2 lilj)[Xi, Xj ],

and so we have similarly that P (x1, . . . , xk;L) ⊂ exp(B( 1
2X1, . . . ,

1
2Xk;

√
6L)).

The first conclusion of Lemma 5.3 shows that if B is a nilbox of dimension k and H is a
subgroup of G normalised by B such that A ⊂ H(expB) then there exists a nilpotent progression
P of dimension k normalising H such that A ⊂ HP . However, this would be of little use without
some control over the size of HP in relation to the size of A ⊂ H(expB), and so we now establish
this.

Lemma 5.4. Suppose that x1, . . . , xk be elements of a 2-divisible abelian group and that L1, . . . , Lk ∈
N. Let r ∈ N and let

P = P (x1, . . . , xk;L1, . . . , Lk);

P ′ = P ( 1
2x1, x2 . . . , xk; 2L1, L2 . . . , Lk);

P ′′ = P (x1, x2 . . . , xk; rL1, L2 . . . , Lk)

Then P ′ lies in the union of 2 translates of P and P ′′ lies in the union of r translates of P .

Proof. We can express the required unions explicitly. Indeed, P ′ ⊂ {0, 12x1} + P and P ′′ ⊂
{(−r + 1 + 2i)L1x1 : i = 0, . . . , r − 1}+ P .

Lemma 5.5. Suppose that X1, . . . , Xk ∈ g and that L ∈ Nk. Let r ∈ N. Then

B( 1
2X1, . . . ,

1
2Xk; 2rL)

lies in the union of at most O(r)O(k2) translates of B(X1, . . . , Xk;L).

Proof. This follows by iterating Lemma 5.4 if we rewrite B(X1, . . . , Xk;L) as

p(X1, . . . , Xk, [X1, X2], . . . , [Xk−1, Xk];L1, . . . , Lk, L1L2, . . . , Lk−1Lk).
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Proof of Theorem 1.1. Writing a := logA, Proposition 4.3 implies that there exist an additive
subgroup h of g and a progression p = p(X1, . . . , Xk;L) in g such that

[h, Xi] ⊂ h for every i, (5.2)

such that H := exp h is a subgroup of G, and satisfying

a ⊂ h + p ⊂ OK(1)a (5.3)

and
k �K 1. (5.4)

Writing B := B(X1, . . . , Xk;L), we may conclude from (5.1), Lemma 5.2, (5.3) and (5.4) that

a ⊂ h + B ⊂ OK(1)a. (5.5)

Condition (5.2) implies that
exp(h + B) = H(expB), (5.6)

and so the first inclusion of (5.5) implies that A ⊂ H(expB). Writing xi := log( 1
2Xi) and

P := P (x1, . . . , xk; 4L), Lemma 5.3 therefore yields A ⊂ HP . The fact that H is normalised by
P follows from (5.2), and so all that remains is to show that |HP | �K |A|. However, this follows
readily from the second inclusion of (5.5), Proposition 4.2 and Lemmas 5.3 and 5.5.

Remarks 5.6. Note that here we have containment of A inside HP , rather than the slightly weaker
notion of control that is needed in [1]. This appears to be largely due to the fact that in [1]
the group G is first embedded in a Lie group, and so there is no guarantee that the progressions
constructed using the arguments seen here will yield progressions that are contained within the
original group G.

To circumnavigate this issue the authors of [1] at various points take dilates of the objects
under consideration that place them back into the span of A, and in so doing sacrifice containment
but maintain control.

The main difficulty in applying arguments of the type found in [1] to torsion groups comes
from the fact that whilst the subgroup h0 of g given by the Green–Ruzsa theorem in the proof of
Proposition 4.3 is automatically a normal subgroup of g, its counterpart exp h0 is neither normal
nor even a subgroup in G. In that sense, the key additional arguments of this note, as compared
to [1], are contained in the remainder of the proof of Proposition 4.3.
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